Tea saponin reduces the damage of Ectropis obliqua to tea crops, and exerts reduced effects on the spiders Ebrechtella tricuspidata and Evarcha albaria compared to chemical insecticides

نویسندگان

  • Chi Zeng
  • Lingbing Wu
  • Yao Zhao
  • Yueli Yun
  • Yu Peng
چکیده

Background Tea is one of the most economically important crops in China. However, the tea geometrid (Ectropis obliqua), a serious leaf-feeding pest, causes significant damage to tea crops and reduces tea yield and quality. Spiders are the most dominant predatory enemies in the tea plantation ecosystem, which makes them potentially useful biological control agents of E. obliqua. These highlight the need for alternative pest control measures. Our previous studies have shown that tea saponin (TS) exerts insecticidal activity against lepidopteran pests. Here, we investigate whether TS represents a potentially new alternative insecticide with no harm to spiders. Methods We investigated laboratory bioactivities and the field control properties of TS solution against E. obliqua. (i) A leaf-dip bioassay was used to evaluate the toxicity of TS to 3rd-instar E. obliqua larvae and effects of TS on the activities of enzymes glutathione-S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CES) and peroxidase (POD) of 3rd-instar E. obliqua larvae in the laboratory. (ii) Topical application was used to measure the toxicity of 30% TS (w/v) and two chemical insecticides (10% bifenthrin EC and 50% diafenthiuron SC) to two species of spider, Ebrechtella tricuspidata and Evarcha albaria. (iii) Field trials were used to investigate the controlling efficacy of 30% TS against E. obliqua larvae and to classify the effect of TS to spiders in the tea plantation. Results The toxicity of TS to 3rd-instar E. obliqua larvae occurred in a dose-dependent manner and the LC50 was 164.32 mg/mL. Activities of the detoxifying-related enzymes, GST and POD, increased in 3rd-instar E. obliqua larvae, whereas AChE and CES were inhibited with time by treatment with TS. Mortalities of E. tricuspidata and E. albaria after 48 h with 30% TS treatment (16.67% and 20%, respectively) were significantly lower than those with 10% bifenthrin EC (80% and 73.33%, respectively) and 50% diafenthiuron EC (43.33% and 36.67%, respectively). The highest controlling efficacy of 30% TS was 77.02% at 5 d after treatment, which showed no difference to 10% bifenthrin EC or 50% diafenthiuron SC. 30% TS was placed in the class N (harmless or slightly harmful) of IOBC (International Organization of Biological Control) categories for natural enemies, namely spiders. Conclusions Our results indicate that TS is a botanical insecticide that has a good controlling efficacy in E. obliqua larvae, which suggests it has promise as application in the integrated pest management (IPM) envisaged for tea crops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-6: Protective Effects of Green Tea Extract on Lead-induced Damage in Mouse Testis

Background: Lead is a heavy metal that has been known for its adverse effects on many body organs and systems and. In the present study, the protective effect of green tea (GTE) on the male reproductive system following the administration of lead (pb) was investigated. Materials and Methods: Forty male NMRI mice were divided into four groups of 10 animals each. Controls, GTE treated, pb treated...

متن کامل

Functional Characteristics, Electrophysiological and Antennal Immunolocalization of General Odorant-Binding Protein 2 in Tea Geometrid, Ectropis obliqua

As one of the main lepidopteran pests in Chinese tea plantations, Ectropisobliqua Warren (tea geometrids) can severely decrease yields of tea products. The olfactory system of the adult tea geometrid plays a significant role in seeking behaviors, influencing their search for food, mating partners, and even spawning grounds. In this study, a general odorant-binding protein (OBP) gene, EoblGOBP2,...

متن کامل

Detecting Deep Divergence in Seventeen Populations of Tea Geometrid (Ectropis obliqua Prout) in China by COI mtDNA and Cross-Breeding

The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea-growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from su...

متن کامل

Identification and Expression Patterns of Putative Diversified Carboxylesterases in the Tea Geometrid Ectropis obliqua Prout

Carboxylesterases (CXEs) belong to a family of metabolic enzymes. Some CXEs act as odorant-degrading enzymes (ODEs), which are reportedly highly expressed in insect olfactory organs and participate in the rapid deactivation of ester pheromone components and plant volatiles. The tea geometrid Ectropis obliqua Prout produces sex pheromones consisting of non-ester functional compounds but relies h...

متن کامل

Ectropis obliqua picorna-like virus IRES-driven internal initiation of translation in cell systems derived from different origins.

Ectropis obliqua picorna-like virus (EoPV) is an insect RNA virus that causes a lethal granulosis infection of larvae of the tea looper (Ectropis obliqua). An internal ribosome entry site (IRES) mediates translation initiation of EoPV RNA. Here, bicistronic constructs were used to examine the 5' untranslated region (UTR) of EoPV for IRES activity. The capacities of the EoPV 5' UTR IRES and anot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2018